Vedic Mathematics

Indian Mathematics from Vedic Period until today is 'Vedic Mathematics'

Ravi Kumar Iyer
Mob. +91 8076484356

Vedic Mathematics

I am sorry I am not able to meet you Physically. But once the pandemic is over, let us meet and learn VM properly. Today is only a TRILER

need your cooperation

If possible pl sit with your school going children above the age of 12. They pick up very quickly

I have conducted VM workshops in many leading universities in USA, Canada, Holland, Norway, Australia, New Zealand etc.

Also in Royal Society
My 5 Sessions on VM in Radio Sydney won maximum attendance award
ravisydney@yahoo.com, www.hindugenius.blogspot.com

${ }^{66}$ You Tend 10 C

The
 Worst

 of the Indian Soxy 95% of the Time
Quotes on Indian Mathematics

- We owe a lot to Indians, who taught us how to count, without which no worthwhile scientific discovery could have been made.
- Albert Einstein

Alört Einstein
Culver Piotures, Inロ:

Ancient Vedic Shloka over 5,000 years back

"Om purna mada purna midam
Purnaat purnam udachyate Purnasya purnam adaaya Purnam eva vasishyate Om shanti shanti shantih"
(Isha Upanishad)
Which translates into:

Guillaume de l'Hôpital 1661-1704 France, Paris
INFINITY $\div \div$ INFINITY $=$ INFINITY
"That is the whole, this is the Whole; from the Whole, the Whole arises; taking away the Whole from the Whole, the Whole remains" (Replace Whole by Infinity)

Great Mathematicians of Vedic Period Indian Mathematics from
 Vedic Period until today is 'Vedic Mathematics'

How old is Vedic Civilization ??

How old is Vedic Civilization ??

Thomas Alva Edison (1847-1931)

Gramaphone 1877

Max Müller (1823 - 1900)

```
अग्रिमीळे पुरोहितं यज्यस देवं रत्वीजम।
होतारं रत्नधातमम ||
aghnimille purohitaṃ yajñasya devaṃ ṛtvijam |
hotāraṃ ratnadhātamam ||
```

I worship Agni who is the priest, the one who leads us from the front, who is the deity subject matter of a ritual, a yajna who is the one who makes the formal invocations in the yajna who is the source, storehouse and the bestower of all wealth, gems, precious stones etc 1-1-1 of Rigvedam.

How old is Vedic Civilization ?? Saraswati Civilization 8,000 BC ? !

NADISTUTI hymn in the Rigveda (10.75)
RV 7.95.1-2,
TANDYA BRAHMANA and the JAIMINIYA BRAHMANA, as well as the Mahabharata, mention that the Sarasvati DRIED UP IN A DESERT.

$1^{\text {ST }}$ Golden Age of Indian Science \& Technology Scientists 3,000 Years before

Dhanwantari, Charaka, Sushruta

Medical Science including Plastic Surgery, Nano Technology, Veterinary Science, Botany, Pharmacy,

Rishi Bharadwaj, Kapil, Kanad
Vimana Shastra or Space Vehicles, Cosmology or Creation of Universe, Nuclear Physics \& Chemistry
Sage Valmiki, Ved Vyas, Patanjali
War Techniques, Missiles,
War Techniques, Architecture, Artha Shastra Yoga, Meditation, Grammar, Ayurveda

Pãṇiní
Father of Linguistics
\& World's First Geek

Bhu Gol (Geography); Ja Gata (it Moves)

- Varaha (Boar, Pig) Avtar saves Earth
- Shape of Earth is ROUND
-West only after Apollo - XI (July 20, 1969)
West only after Apollo - XVII Earth Photos (De 6,1972)

Earth Rotates on its own axis and revolves around the Sun 1543 Copernicus

Ja Gata - That which moves NAVAGRAHA

AMAVASYA Lord Krishna doing Tarpanam

Hindus Contribution to Calendar Science

- Nyayiru
-Thingal
- Sevvai
-GURU
-Shani

- ${ }^{\text {st }}$ April

Financial
-NEW YEAR

- Carl

Sagan
-Cosmos

- Cosmology

- March
- Sapta
- Ashta
- Nava
-Bhu-
Golam,
- Ananta Koti Brahmanda m

Jyeshtha Nakshatra = Antares

-JYESTHA or Elder / Biggest Star
It is just a point in the sky

- Antares or Alpha Scorpii
$17^{\text {th }}$ brightest star in the nighttime sky
- 550 light years away
-Radius is 883 times that of Sun Most Massive star /
BIGGEST Star
~ 70 Crore times sun

Sapta Rishi = Ursa Major

-The present, seventh Manvantara - the interval of Vaivasvata Manu

- Kashyapa, Atri, Vashishtha, Vishvamitra, Gautama, Jamadagni, Bharadvaja
- Vasishtha is accompanied by his wife, the faint companion star Arundhati (Alcor/80 Ursa Majoris).
- In Hinduism, Ursa Major is known as Saptarshi, each of the stars representing one of the Saptarshis or Seven Sages viz. Bhrigu, Atri, Angirasa, Vasishta, Pulastya, Pulalaha and Kratu. The fact that the two front stars of the constellations point to the pole star is explained as the boon given to the boy sage Dhruva by Lord Vishnu.
-https://www.youtube.com/watch?v=_yNeuyaGO_E
-Khurshed Batliwala Technology of Spirituality ${ }^{13}$

Mathematics in Vedic Period

Panini Backus Noir Form

$\sqrt{2}=1+1 / 3+1 / 3 \times 4-1 / 3 \times 4 \times 34$
$=577 / 408$
$=1.414216$
Yajyavalkya, Apastambh, Katyayan, Manava
Shulbha Sutras, Pythagoras Theorem, Triplets, Square Root of 2
Circling the Square
108 = Diameter of Sun Diameter of Earth
= Distance between earth and Sun diameter of Sun
= Distance between Moon and Earth Diameter of Moon

Mathematicians from Maharashtra

Dr Narendra Karmarkar Dr Sharadchandra Shrikhande. Dr Jayant Narlikar.

Dattatreya Kaprekar 1905-1984

HARSHAD NUMBERS (Joyous Numbers) 12, 18, 20,
DEMLO NUMBERS (1, 121, 12321, 1234321 $=$ Sq of 1, 11, 111, 1111 etc)

KAPREKAR NUMBERS (45X45, 55X55, 99X99); 703, 5292, $45 X 45=2025 \& 20+25=45 \quad 55 X 55=3025 \& 30+25=55$ $99 X 99=9801 \quad \& \quad 98+01=99 ;$
$703 \times 703 \equiv 494209 \& \quad 494+209=703$
DATTATREYA NUMBERS 7, 13, 35, 65 are Dattatreya Nos $13^{2} \equiv 13 \times 13 \equiv 169 \equiv 16 * 9=4^{2}{ }^{*} 3^{2}$
$7^{2}=7 \times 7=49\left(2^{2}, 3^{2}\right)$,
$19^{2} \equiv 361=36-1=6^{2}{ }^{*} 1^{2}$
$35^{2} \equiv 1,225 \equiv 1-225 \equiv 1^{2} * 15^{2} \quad 57^{2} \equiv 324-9 \equiv 18^{2} * 3^{2}$,
$65^{2}=4,225=4-225=2^{2}$ * 15^{2},

Dattatreya Kaprekar 1905-1984

Harshad Numbers Joyous Numbers

Numbers divisible by the sum of their digits
The first 50 Harshad numbers with more than one digit in base 10 are:
$10,12,18,20,21,24,27,30,36,40,42,45,48,50,54,60,63$, $70,72,80,81,84,90,100,102,108,110,111,112,114,117$, $120,126,132,133,135,140,144,150,152,153,156,162$, 171, 180, 190, 192, 195, 198, 200.

Dattatreya Kaprekar 1905-1984 Demlo Numbers
 Demlo is a Railway Station in India

numbers 1, 121, 12321, 1234321..., which are the squares of the repunits 1,11 , 111, 1111,....

Dattatreya Kaprekar 1905-1984 Kaprekar Numbers

a positive integer with the property that if it is squared, then its representation can be partitioned into two positive integer parts whose sum is equal to the original number

$$
\begin{array}{ll}
45 \times 45=2025(20+25=45) & 55 \times 55=3025(30+25=55) \\
703^{2}=494209(494+209=703) & 2728^{2}=7441984(744+1984) \\
5292^{2}=28005264(28+005264) & 857143^{2}=(734694+122449) \\
99^{2}=9801(98+01=99) &
\end{array}
$$

Dattatreya Kaprekar 1905-1984 Devlali Numbers (Self Nos) Kaprekar lived in Devlali

Integers that cannot be generated by taking some other number and adding its own digits to it. is a SELF No.

21 is NOT a Self No. $21 \equiv(15+1$ and 5 ie: $15+1+5 \equiv 21$

Dattatreya Kaprekar 1905-1984 Dattatreya Numbers

Numbers of the Form $\quad D \equiv W n A+B$ Where D, A, B are Squares $13 \times 13=169=\left(16 \& 9\right.$ ie 4^{2} and 3^{2}) $13^{2}=4^{2} \& 3^{2}=10 \times 4^{2}+3^{2}$
$D=W n A+B \quad D, A \& B$ are Square Numbers

In Decimal System	$\mathbf{D}=\quad 10 \mathrm{~A}$
	(D, A, B are Squares)

49, 169, 361, 1-225, 324-9, 4-225,

Srinivas Ramanujam 1887-1920

'in the same league as legendary mathematicians such as Gauss, Euler, Cauchy, Newton and Archimedes'

English mathematician G.H. Hardy

Died at the age of 32. Fellow of Royal Society, Fellow of Trinity College, Cambridge

1729 Ramanujan Number $=10^{3}+9^{3}=12^{3}+1^{3}$

Mathematical analysis, Infinite Series

Number Theory, Continued Fractions.

3900 results

(mostly identities and equations) independently compiled results - both original and highly unconventional Ramanujan prime and the Ramanujan theta function,

Akshay Venkatesh 1981 Perth, Western Australia

International Physics Olympiad and
International Mathematics Olympiad, at the age of 12
only Australian to win 2 Olympiads

Stanford University Professor

counting, equi-distribution problems in auto-morphic forms and number theory, in particular representation theory, locally symmetric spaces and ergodic theory.

Ancient Books of Vedic Knowledge

4 Vedas	6 Vedangas	4 Upa Vedas	4 Upangas
- Rig	- Siksha (Phonetics) - Vyakarana (Grammer)	- Ayurveda (Charak Samhita)	- Mimamsa (Jaimini)
- Yajur	- Chhandas (Metres)	- Dhanurveda (Vishwamitra)	- Nyaya (Rishi Gautam)
- Sama	- Niruktam (Etymology origin of words)	- Gandharva Veda (Bharat Muni)	- Puranas (Ved Vyas)
- Atharva	- Jyotisham (AstronomyEye of Ved) - Kalpam (ceremonieslimbs of Ved)	- Stapathya Veda \& Artha Shastra (Bhrugu Ved Vyas) Et Noble Thougints come from all dijections. Rig Veda	- Dharma Shastras (Manu, Parashar, Yajnavalkya etc)

JYOTISH-SHASTRA

Jyotis-Sashtra Surya Bhagwan Taught Mayan Aryabhatta, Varahamihir, Bhaskaracharya

Sidhanta Skanda Vyakta Ganit Avyakta Ganit Sameekaran

Hora Skanda
Horoscope
12 Zodiac Signs

Samhita Skanda Sagunas, Nimitta Scents

Vedic Physics Measurement of Time

- Vedic Units of Time
- (a)Smaller Units of Time
- TRUTI $=33,750$ th fraction of a second is the smallest unit of time

100 Truti $=1$ Tatpara
45 Tatpara $=1$ Nimesha
30 Nimesha $=1$ Prana $=4$ secs
3 Nimesh = 1 Vipala $=0.4$ seconds
60 Vipalas $=1$ Pala $=24$ seconds
60 Palas $=1$ Ghatika $=24$ Minutes
60 Ghatikas = 1 Divas $=1$ day or 24 Hours

Vedic Physics Measurement of Time

- Vedic Units of Time
- (a) Larger Units of Time
7 Divas = 1 Saptah = 1 week

15 Divas = 1 Paksha = 1 Fortnight
2 Paksha = 1 Maas = 1 Month
2 Maas = 1 Ritu = 1 Season
6 Maas = 1 Ayana (Uttarayan \& Dakshinayan)
6 Ritu = 2 Ayanas $=12$ Maas $=1$ Varsha $=1$ Year
12 Years $=1$ Kumbha
60 Years = Sashtiyapta Purti
100 Years = 1 Shatabda
10 Shatabda = 1 Sahasrabda = 1 Millenium = 1,000 years

Vedic Physics Measurement of Time

CARL SAGAN

- Vedic Units of Time
- (b) Higher Units of Time
- 432 Sahasrabda $=1$ Kali Yug or Yug
- 2 Yug
- 3 Yug
- 4 Yug
- 10 Yug
= 1 Dwapar Yug
= 1 Treta Yug
= 1 Satya Yug
= 1 Maha Yug
$=432,000$ years
$=864,000$ years
= 1296,000 years
= 1728,000 years
= 4.32 Million Years
- 1000 Maha Yug $=1$ Kalpa $=4.32$ Billion Years $=$ Morning of Brahma
- 2 Kalpa $=1$ Day of Brahma $=\mathbf{2 , 0 0 0}$ Maha Yug $=8.64$ Billion Years
- 360 Days of Brahma $=1$ Year of Brahma $=3110.4$ Billion Years = 3.1104 Trillion Years
1 Maha Kalpa or Brahma Ayu $=100$ Years of Brahma 311.04 Trillion Years $\begin{array}{ll}= & 3.1104 \times 1014 \text { Solar Years } \\ = & 311,040,000,000,000 \text { solar years. }\end{array}$
- Thus the Vedic Seers had thought of the smallest and the largest units of time namely,

Maha Kalpa or Brahma Ayu, = 311,040,000,000,000 solar years, the largest Unit of Time

Indian inventions

Indian inventions

1. Bodhayan(BC 1700 / 800 BCE) Diagonal square theorem

Professor H. G. Rawlinson writes:

It is more likely that Pythagoras was influenced by India than by Egypt. Almost all the theories, religions, philosophical and mathematical taught by the Pythagoreans, were known in India in the sixth century B.C., and the Pythagoreans, like the Jains and the Buddhists, refrained from the destruction of life and eating meat and regarded certain vegetables such as beans as taboo" "It seems that the so-called Pythagorean theorem of the quadrature of the hypotenuse was already known to the Indians in the older Vedic times, and thus before Pythagoras (ibid). (Legacy of India 1937, p. 5).

Indian inventions

Indian inventions

Varahamihir (488-587AD) Tri-Lostaka

European Equivalents

Foreigners` claims

B.Pascal (1623-1662 AD) Pascal triangle.

1
11
121
1331
14641
15101051

Chandas Shastra an Ancient Indian book on Sanskrit prosody written by Pingala between the 5th and 2nd century BCE

While Pingala's work only survives in fragments, the commentator Halayudha, around 975 , used the triangle to explain obscure references to Meru-prastaara, the "Staircase of Mount Meru".

Indian inventions

Indian inventions

Foreigners` claims

Foreigners` claims

3. Brahmagupta (628 AD)

$$
N x^{2}+1=y^{2}
$$

John Pell (1610-1685)
Pell's equation.
Pell's equations were studied as early as
1000 BC in India. They were mainly interested in the equation

$$
X^{2}-2 Y^{2}=1
$$

because of its connection to the square root of two. Indeed, if x and y are integers satisfying this equation, then x / y is an approximation of $\sqrt{ } 2$. For example, Baudhayana discovered that

$$
x=17, y=12 \quad \& \quad x=577, y=408
$$

are two solutions to the Pell's equation, and give very close approximations to the square root of two.

Indian inventions

Indian inventions

4.Virahank`s (600AD) series 0,1,1,2,3,5,8,13,21.....

European Equivalents

European Equivalents

Fibonacci series (1170-1250)

The Fibonacci sequence was well known in ancient India, where it was applied to the metrical sciences (prosody), long before it was known in Europe.

Developments have been attributed to Vedic Scholar Pingala (400 BC), Virahanka (6th century AD), Gopāla (c. 1135 AD), and Hemachandra (c. 1150 AD).

The motivation came from Sanskrit prosody, where long syllables have length 2 and short syllables have length 1 . Any pattern of length n can be formed by adding a short syllable to a pattern of length $n-1$, or a long syllable to a pattern of length $n-2$; thus the prosodists showed that the number of patterns of length n is the sum of the two previous numbers in the sequence. Donald Knuth reviews this work in The Art of Computer Programming.

Indian inventions

Foreigners` claims

5. Mahavira formula(850 AD) for combinations $\mathrm{n} \mathbf{C r}=(\mathrm{n})!/(\mathrm{r}!)(\mathrm{n}-\mathrm{r})!$ (! stands for factorial)

Formula for relative difference (retrograde motion)
7. Madhav`s theorem (1340-1425) Gregory Series(1638-1675) \(x=\tan x / 1-\tan 3 x / 3+\tan 5 x / 5-\) 8. Madhav`s series (1340-1425)

II (pie) $=1-1 / 3+1 / 5-1 / 7+\ldots \ldots \ldots .$. Leibnitz `s expansion (1646-1716) 9. Narayan Pandit (1356 AD) Fermat’s result (1601-65) factorization method for divisiors of a number 10. Bhaskaracharya (1114-1193) Euler's division algorithm method of finding greatest common divisor 11. Permeshwara`s (1360 AD) Huiler`s formula (1782AD)

Formula for finding circum-radius of a cyclic quadrilateral

Indian inventions

12. Nilkanth Somyaji (1444-1545)

Summations $\sum \mathrm{n}, \sum \mathrm{n}^{2}$ and $\sum \mathrm{n}^{3}$
13 Nilkanth Somyaji (1444-1545)
r sine rule $a / \sin A=b / \sin B=c / \sin C$

Foreigners` claims

Euler`s results (1707-1783)

Euler`s results

Kepler

14. Brahmagupta (628 AD volumes of frustum of cone and of pyramid

15 Jyeshtha Deo (1500 AD) Euler formulae for $\sin (x+y)$ and $\cos (x+y)$ in the text ` Yuktibhasha`

16 Jyeshtha Deo (1500 AD),
Liebnitz (1646-1716)
Linear equations,

17 Jyeshtha Deo (1500 AD) volume and surface area of a sphere
18. Shankar Variar (1500-60)

Values of II/4, II/16 in series

Liebnitz, by method of integration

Gauss(1777-1855)

MATHEMATICIAN TIME PERIOD

- Baudhayana (1700/800 B.C.E. $1^{\text {st }}$ to explain Pythagoras Theorem)
- Apastamba (1500 / 600 BCE)
- Katyayana (1100 / 200 BCE) Umaswati (150 B.C.E.)
- Aryabhata (476-c. 550 C.E.) Varahamihira (c. 505-c. 558) Brahmagupta (c.598-c. 670) Govindaswami (c. 800-850)
- Mahavira (Mahaviracharya) (850)

MATHEMATICIAN TIME PERIOD

- Pruthudakaswami (850)
- Sridhara (900)
- Manjula (930)
- Aryabhata II (950)
- Prashastidhara (958)
- Halayudha (975)
- Jayadeva (1000)

MATHEMATICIAN TIME PERIOD

- Sripathi (1039)
-Hemachandra Suri (b. 1089)
- Bhaskara (1114-c. 1185)
- Cangadeva (1205)
- Madhava of Sangamagramma (c. 1340-1425)
- Narayama Pandit (1350)
- Paramesvara (1360-1455)
- Nilakantha Somayaji (14551555)

MATHEMATICIAN TIME PERIOD

- Sankara Variar (c. 1500-1560) Narayana (c. 1500-1575)
- Jyesthadeva (550)
- Acyuta Pisarati (c. 1550-1621) Putumana Somayaji (c. 16601740) Jaganath Pandit (1700)
- Sankara Varman (1800)

Vedic Additions

```
\begin{tabular}{|c|c|c|c|c|}
\hline 39 & \(30+9\) & I & 345 & \(300+40+5\) \\
\hline 46 & \(40+6\) & I & 678 & \(600+70+8\) \\
\hline --- & -- & I & --- & ------------- \\
\hline
\end{tabular}
85 70+15 = 85 I 1023 900 + 110 + 13
I 900+120+3
I = 1 023
============================
346 300 + 40 + 6
987 900 + 80 + 7
123 100 + 20 + 3
805 800 + 00 + 5
\(2261 \quad 2100+140+21\)
                            22 6 1
```


Vedic Additions

			Hundred s	Tens	Units	
	0	3	4	6		300
+	0	9	8	7		6
+	0	1	2	3		100
+	0	8	0	5		80

Vedic Subtractions

MITRAS
1 and 9
2 and 8
3 and 7
4 and 6
5 and 5

Compare the digits in the First Line and Second Line.

* If any digit in the SECOND LINE is bigger (than the digit in the FIRST LINE), then we find its MITRA and add it to the digit in FIRST LINE
- Add 1 to the left of the Mitra number
- Add Green Numbers and Subtract PINK numbers

		To Subtract 24 from 53		
First Line	53	4 (of 24) is bigger than 3 (of 53)	53	53
Second Line	- 24	MITRA of 4 is 6 $6+3=9$	- A 6	$-3+6$
		Add 1 to 2 (of $24)=3$		$=29$
		$5-3=2$		

Vedic Subtractions

1 and 9

2 and 8
3 and 7
4 and 6

Compare the digits in the First Line and Second Line.

* If any digit in the SECOND LINE is bigger (than the digit in the FIRST LINE), then we find its MITRA and add it to the digit in FIRST LINE
- Add 1 to the left of the Mitra number
- Add Green Numbers and Subtract PINK numbers

		To Subtract 274 from 523		
First Line	523	4 (of 274) is bigger than 3 (of 573)	523	$\begin{array}{ccc} 5 & 2 & 3 \\ 2 & 7 & 4 \end{array}$
Second Line	-274	MITRA of 4 is 6 Add 1 to $7=8$ Mitra of $8=2$	-28 6	$-3+2+6$
Answer	249		Answer	$=249$
		Add 1 to 2 (of 274) = 3		
		$5-3=2$		

Vedic Subtractions

		256524 from 975708
	975708	$\begin{array}{ll} \text { Bigger Nos } & \begin{array}{r} 6 \text { and } \\ \text { Mitras } \end{array} \\ \hline 4 \text { and } \end{array}$
	-256524	Add 1 to Nos on Left
	$\begin{array}{rr} 975 & 708 \\ 25-6 & 5-24 \end{array}$	
	264684	
	719184	

Multiplying by 5

- Case 1: All Even Digits
- Case 2:

Odd and Even Digits \{last Digit is even\}

- Case 3:

Odd and Even Digits \{last Digit is odd, including all odd digits\}

Multiplying by 5 - All Even Digits

- Step 1: Divide by 2
- Step 2: Add a Zero
- Example: 5×4
- Step 1: Divide 4 by $2=2$
- Step 2: Add Zero = 20
- Example: $5 \times 12=6 / 0=60$

Multiplying by 5 - All Even Digits

- Example: 5×246
- Step 1: (Divide 246 by 2) = 123
- Step 2: (Add Zero)

0

- Answer is

1230

- Solve:
- $5 \times 286=1430$
- Solve:
- $5 \times 464844=2324220$
- 5×20046824
$5 \times 4820=24100$
- 5×80640682

403203410
5×24824
5×4800066
5×6222480
33332400

Multiplying by 5 -Even and Odd Digits (Last Digit - Even)

- Example: 5×256
- Step 1 : Put a dot below all odd numbers
- Step 2 :Subtract one from all odd Digits to make them EVEN and write this Even Digit above the Odd Digit
- Step 3 :Carry Forward this one to the Digit on the Right of the Odd Digit
- Step 4 : Divide each Digit by 2 and Add Zero
- $5 \times 256=2-4-16 *=1280$

Multiplying by 5 -Even and Odd Digits (Last Digit - Even)

- Example: 5×23694
- Step 1 : Put a dot below all odd numbers

$$
23.69 .4
$$

- Step 2 : Subtract one from all odd Digits to make them EVEN and write this Even Digit above the Odd Digit

$$
2^{23} .6^{89.4}
$$

Multiplying by 5 -Even and Odd Digits (Last Digit - Even)

- 5×23694
- Step 3 : Carry Forward this one to the Digit on the Right of the Odd Digit
$\rightarrow 2^{23} \cdot{ }_{1} 6^{89} \cdot 1_{1}^{4}=2-2-16-8-14 *$
- Step 4 : Divide each Digit by 2 and Add Zero
$118470 \quad$ Answer

Multiplying by 5 -Even and Odd Digits (Last Digit - Even)

-Solve
$-5 \times 234=2-2-14 \times 5$
$=1170$

- $5 \times 20304=2-0-2-10-4 \times 5$
$=101,520$
- $5 \times 2003004=2-0-0-2-10-0-4=$ 10,015,020
-5 X $4,356,778$
$=4-2-14-16-6-16-18 \times 5$
$=21,783,890$
- $5 \times 12,345,678=61,728,390$

Multiplying by 5 -All Odd Digits

- Example : 357
- Step 1 : Subtract one from all Odd Digits and make them Even
- Step 2 : Carry forward this one to the Digit on Right side
-Step 3 : Divide by 2 and add "5"

Multiplying by 5 -All Odd Digits

- Example: 357×5
- Step 1 :

Subtract one from all Odd Digits and make them Even

$$
246 *
$$

- Step 2 :

Carry forward this one to the Digit on Right side
$2{ }_{14}{ }_{1} 6$ *

- Step 3 :

Divide by 2 and add "5"
1785
Answer

Multiplying by 5 -All Odd Digits

- Solve
- 5 X 3579 = 2-14-16-18-* $=17,895$
- 5 X 9753 = 8-16-14-12-* $=4$ 8, 765
- 5 X 13079 = 12-10-6-18-*= 6 5, 395
- 5 X 305577 = 2-10-4-14-16-16-* $=15278885$ $=1,527,885$
- 5×999777555

$$
\begin{aligned}
& =8-18-18-16-16-16-14-14-14-* \\
& =499 \\
& =488 .
\end{aligned}
$$

- 5 X 3035077009

Multiplying by 5 - Any Number

-Solve
-5X 2358
-5×123056
-5X 23456789
-5X123456789
-5X 987654321

To Multiply by 11

- Clue: Add adjacent numbers
- Step 1:
write the the first and last digit as they are
- Step 2:

Add two adjacent
digits from the right and fill the gaps

- Step 3:

Carry forward 1 if need be to the left

To Multiply by 11 - No Carry Forward

\rightarrow Example: 11 X 24

- Step 1: write the the first and last digits as they are

2 N 4

- Step 2:

Add two adjacent digits from the right and fill the gaps

$$
264 \quad(2+4=6)
$$

To Multiply by 11

- Example: 11 X 17
- Step 1: write the the first and last digits as they are

1 N 7

- Step 2:

Add two adjacent digits from the right and fill the gaps
1 8 $7 \quad(1+7=8)$

To Multiply by 11

-Solve: (answers are in BLUE
$\rightarrow 11 \times 22=24211 \times 33=363$
$\rightarrow 11 \times 27=29711 \times 36=396$
$\rightarrow 11 \times 44=484$
$11 \times 54=594$
-11 X $62=682$
$\rightarrow 11 \times 81=891$
11×72
$11 \times 71=781$

To Multiply by 11 - Carry Forward

- Example:11 X 38
\rightarrow Here $3+8=11$. Hence Carry forward
- Step 1: write the the first and last digits as they are

3 N 8

- Step 2: Add
two
digits from the adja
and fill the gaps
$418 \quad(3+8=11)$

To Multiply by 11 - Carry Forward

-Solve: Answers are in BLUE

$-11 \times 29=319 \quad 11 \times 39=439$
$\rightarrow 11 \times 48=528 \quad 11 \times 68=748$
$\rightarrow 11$ X $99=108911$ X $88=968$
$\rightarrow 11$ X $76=836 \quad 11$ X $67=737$
$\rightarrow 11$ X $85=935 \quad 11$ X $58=638$

To Multiply by 11-3 or more Digits

- Example: 11 X 234
- Step 1: write the the first and last digits as they are 2 NM 4
- Step 2: Add two
adjacent digits from the right and fill the gaps

$$
\begin{aligned}
& 2 /(2+3) /(3+4) / 4 \\
= & 257
\end{aligned}
$$

To Multiply by 11-3 or more Digits

- Example: 11 X 26134
- Step 1: write the the first and last digits as they are $2 \mathrm{~N} M \mathrm{P}$ O 4
- Step 2: Add two
adjacent digits from the right and fill the gaps

$$
2 /(2+6) /(6+1) /(1+3) /(3+4) / 4
$$

$2 \underline{8} 4 \underline{7}$

To Multiply by $11-3$ or more Digits

 with Carry Forward- Example: 11 X 28194
- Step 1: write the the first and last digits as they are 2 N M P O A
- Step 2: Add two adjacent digits from the right and fill the gaps

$$
\begin{gathered}
2 /(2+8) /(8+1) /(1+9) /(9+4) / 4 \\
2 / 10 / 9 / 10 / 13 / 4
\end{gathered}
$$

3101134

To Multiply by 11 - Carry Forward

-Solve: Answers are in BLUE
$\rightarrow 11 \times 2709=29,799$
$11 \times 3509=38,599$
$\rightarrow 11$ X 4531811 X 62815
$\rightarrow 11 \times 8272=8 / 10 / 992=90,992$

- $11 \times 9292=9 / 11 / 11 / 11 / 2$ $=102,212$
$\rightarrow 11 \times 7263511 \times 1234567$
- 11 X 98765411 X 9080706

To Divide 1 by 19, 29, 39, 49, ... 99

Sutra is EKADHIKENA (One More)
$1 \div 19=0.052631578947368421$
$1 \div 29=0.03448275862068$
96551724137931
Ekadhik or One More or Add One
For dividing by 19 the multiplier is 2 For dividing by 29 the multiplier is 3 For dividing by 59 the multiplier is For dividing by 99 the multiplier is * When dividing by 19 , the BIGGEST REMINDER is 18 (19 or 20 cannot be the reminders)

To Divide 1 by 19, 29, 39, 49, ... 99

COMPLIMENTS of 9 :

0\&9, 1\&8, 2\&7, 3\&6, 4\&5
$1 \div 19=0.052631578947368421$
$1 \div 19=0.052631578$
947368421
(There is a pattern)
(Complement of 9)
$1 \div 19=0 . \begin{array}{rrr}052 & 631 & 578 \\ 947 & 368 & 421\end{array}$ (Pl Remember this)
$1 \div 29=0.03448275862068$
96551724137931
$1 \div 29=0.0344$
8275
862
068
9655
1724
137
931

Vedic Division: Divide 1 by 19, 1 Divided by 19, (VM says Multiply by 2)

Vedic Multiplication VM of 1 or 2 digits by 2 :

VM of	16	is	$6 \times 2+1$	$=$	13
VM of	13	is	$3 \times 2+1$	=	7
VM of	7	is	$7 \times 2+0$	=	14
VM of	14	is	$4 \times 2+1$	$=$	9
VM of	9	is	9×2	=	18
VM of	18	is	$8 \times 2+1$	=	17
VM of	17	is	$7 \times 2+1$	=	15
VM of	15	is	$5 \times 2+1$	=	11
VM of	11	is	$1 \times 2+1$	=	3
VM of	3	is	3×2	=	6
VM of	6	is	6×2	$=$	12

A. 1 Divided by 19, (VM says Multiply by 2) B. $1 \div 20=0.05$

Hence $1 \div 19$ should be close to 0.05 (\& slightly bigger)
C. Write the answer from Right to Left by continuously multiplying by 2 starting with 1.
D. Vedic Multiplication of 1 or 2 digits by 2
E. $1 \div 19=$
$0.05{ }_{1} 263{ }_{1}{ }_{1} 5{ }_{1} 7{ }_{1} 89{ }_{1} 47{ }_{1} 3{ }_{1} 6 \quad 8-4-2-1$

Multiply by 2
1
$1 \times 2=2$
$2 X 2=4$
$4 X 2=8$
$8 \times 2=16={ }_{1} 6$

Vedic Multiplication by 2
$16 X 2={ }_{1} 6 X 2=12+1=13={ }_{1} 3$
${ }_{1} 3 \times 2=3 X 2+1=7$
$7 X 2=14={ }_{1} 4$
${ }_{1} 4 X 2=4 \times 2+1=9$

Vedic Multiplication by 2 $9 \mathrm{X} 2=18={ }_{1} 8$
${ }_{1} 8 x 2=8 x 2+1=17={ }_{1} 7$
${ }_{1} 7 \times 2=7 \times 2+1=15={ }_{1} 5$
${ }_{1} 5 \times 2=5 \times 2+1=11={ }_{1} 1$
$1 \times 2=1 \times 2+1=3$

A. 1 Divided by 19, (VM says Multiply by 2)

$$
\begin{aligned}
& \text { E. } \quad 1 \div 19= \\
& 0.05{ }_{1} 263{ }_{1}{ }_{1} 5{ }_{1} 7{ }_{1} 89{ }_{1} 47{ }_{1} 3{ }_{1} 6 \text { 8-4-2-1 }
\end{aligned}
$$

G. $1 \div 19=0.052631578947368421$

Multiply by 2

```
1
1X2 = 2
2X2 = 4
4X2 = 8
8X2 = 16 = , 6
```

Vedic Multiplication by 2

$$
16 X 2={ }_{1} 6 \times 2=12+1=13={ }_{1} 3
$$

$$
13 \times 2=3 X 2+1=7
$$

$$
7 \times 2=14={ }_{1} 4
$$

$$
14 X 2=4 \times 2+1=9
$$

Vedic Multiplication by 2
$9 X 2=18={ }_{1} 8$
${ }_{1} 8 x 2=8 x 2+1=17={ }_{1} 7$
${ }_{1} 7 \times 2=7 \times 2+1=15={ }_{1} 5$
$5 \times 2=5 \times 2+1=11={ }_{1} 1$
$1 \times 2=1 \times 2+1=3$

Square of Numbers ending in 5

Ekadikena Purvena
(One More than Previous) $(105)^{2},(195)^{2},(995)^{2}$,

EKADHIKENA or One More or Add 1

In case of	25	Add 1 gives	2×3	$=6$
In case of	35	Add 1 gives	3×4	$=12$
In case of	45	Add 1 gives	4×5	$=20$
In case of	75	Add 1 gives	7×8	$=56$
In case of	95	Add 1 gives	9×10	$=90$
In case of	105 Add 1 gives	10×11	$=110$	
In case of	195 Add 1 gives	19×20	$=380$	
In case of	995 Add 1 gives	99×100	$=9900$	

Square of Numbers ending in 5

Ekadikena Purvena
(One More than Previous)
To Find Squares of 15, 25, 35, ... 95, 105, 195, 995,
$(25)^{2}=625(2 \times 3=6)$
($5 \times 5=25$)
$(35)^{2}=1225$
($3 \times 4=12 \& 5 \times 5=25$)
$(85)^{2}=7225$
($8 \times 9=72$)
$(105)^{2}=11025$
(10x11=110)
$(195)^{2}=38025$
(19×20 = 380)
$(995)^{2}=990025(99 \times 100=9900)$

Special Multiplications

Ekadikena Purvena (One More than Previous)
SPECIAL CASES 2 conditions
(a) Units add to 10 \& (b) Tens are same
$23 \times 27=621(2 \times 3 ; 3 \times 7)(3+7=10)$
$192 \times 198=38016 \quad(19 \times 20 ; 2 \times 8)$
(19 is common \& $2+8=10$)
23×26 is not possible because units $3+6=9$ 23×37 is not possible because TENS are 2 and 3

Find: $44 \times 46=$? (2024) $91 \times 99=(9009)$ how !! $993 \times 997=?(990021) \quad 84 \times 86=?(72$ 24)

Multiple Digits entirely of 9 Eka Nyunena Purvena (One Less than Previous)

Step 1: Minus 1
Step 2: Complement from 9
COMPLIMENTS of 9 :
0\&9, 1\&8, 2\&7, 3\&6, 4\&5
Find $\quad 49 \times 99=$
Step 1: Subtract 1 from $49=48$
Step 2: Take complement of $4 \& 8=51$ Hence $\quad 49 \times 99=4851$
===========================
$76 \times 99=7524 ; \quad 123 \times 999=122877$

Multiple Digits entirely of 9 Eka Nyunena Purvena (One Less than Previous)

$49 \times 99=4851$
$777 \times 999=776223$
$120357 \times 999999=120356-879643$
$77 \times 999=077 \times 999=078-921$

$$
\begin{array}{ll}
777 \times 99=(77699-776) & =76923 \\
1234 \times 9=(12339-1233) & =11106 \\
\mathbf{1 2 3 4} \times 99=(\mathbf{1 2 3 3} \mathbf{9 9 - 1 2 3 3}) & =\mathbf{1 2 2 , 1 6 6} \\
1234 \times 999=(1233999-1233) & =1232,766
\end{array}
$$

(Subtract 1; adjust 99s on Rt side; subtract)

General Multiplication Urdhva Tiryak (Vertical \& Cross-wise)

$$
\begin{aligned}
12 \times 13 & =1 \times 1 / 1 \times 2+1 \times 3 / 2 \times 3 \\
& =1 / 2+3 / 6=156 \\
37 \times 42 & =12 / 28+6 / 14 \\
& =12 / 34 / 14=1554 \\
& \\
1021 \times 2103= & 2 / 1 / 4 / 7 / 1 / 6 / 3 \\
& =2147163
\end{aligned}
$$

$$
\begin{aligned}
& \text { js JOO ECE }
\end{aligned}
$$

- 1 Ekam
- 10 Dasham
- 100 Shatam
- 10^{3} Sahasram
- 10^{5} Lakshaha
- 10^{7} Kotihi
- 10^{9} Ayutam
- 10^{11} Niyutam
- 10^{13} Kankaram
- 10^{15} Vivaram
- 10^{17} Parardhaha
- 10^{19} Nivaahaha
- 10^{21} Utsangaha
-10^{23} Bahulam
- 10^{25} Naagbaalaha
- 10^{27} Titilambham
- 10^{29} Vyavasthaana

Pragnaptihi

- 10^{31} Hetuheelam
- 10^{33} Karahuhu

$$
\text { jヶJ } 100 \mathrm{EC} E
$$

- 10^{35} Hetvindreeyam
- 10^{37} Samaapta lambhaha
- 10^{39} Gananaagatihi
- 10^{41} Niravadyam
- 10^{43} Mudraabaalam
- 10^{45} Sarvabaalam
- 10^{47} Vishamagnagatihi
- 10^{49} Sarvagnaha
- 10^{51} Vibhtangamaa
- 10^{53} Tallaakshanam
- In Anuyogdwaar Sutra
- 100 BCE one numeral is raised as high as 10^{140}
- The highest prefix used for raising 10 to a power in Today's Maths is D for 10^{30}

Vedic Maths Applied to Accountancy

- Vedic Maths and Short Cuts as applied to Accountancy
- https://www.youtube.com/watch?v=m9pgirOIXdE
- Accountancy applies a lot of mathematics. When we apply Vedic Mathematics to accountancy, calculations become simple and time saving. Thus
- Accountancy + Vedic Mathematics $=$ MATHEMAGICS of Accountancy.
- Technique 1: Dealing with Fractions and Percentages
- Case 1: Solutions of Problems dealing with Fractions
- Ans $=$ Fraction in Question X Value Given Fraction Known

Vedic Maths Applied to Accountancy

- Case 1: Solutions of Problems dealing with Fractions
- Ans $=$ Fraction in Question X Value Given Fraction Known
- Example 1:

If $1 / 2$ of my pocket money is Rs $500 /-$ what is $3 / 4$ of my pocket money.

Here Fraction in Question is $3 / 4$;
Fraction Known is $1 / 2$
Value Given for the known Fraction is Rs 500/-
Hence Ans $=\{3 / 4 / 1 / 2\} \times 500$
$=(3 \times 2) /(4 \times 1) \times 500$
$=\quad(3 / 2) \times 500=3 \times 250$
$=\quad$ Rs 750/-

Vedic Maths Applied to Accountancy

- Case 2: Solutions of Problems dealing with Percentage
Ans $=\frac{\% \text { to Know }}{\% \text { Known }} \quad X$ Value Given
- Example 2: If 50% of my pocket money is Rs $500 /-$ what is 75% of my pocket money.
- Here \% to KNOW is 75\% \% Known is 50\%

Value Given for the known \% is Rs 500/-

Hence, Ans $=(75 / 50) \times 500$
$=\quad$ Rs 750/-

Vedic Maths Applied to Accountancy

- Example 3: I sold goods for Rs 50,000 at 25% profit on cost. What is the profit?
- Let $100 x$ be the cost price. The Profit will be $25 x$ and sale price will be 125x.
- Here value to KNOW is Profit which is 25%
- \% Known is Sale Price $=125 \%$. Sale Price value is Rs $50,000 /-$

Vedic Maths Applied to Accountancy

- Example 4: What is cost in the above example?
- Here we want to find the cost price which is 100%
Ans $=\frac{\frac{\% \text { to Know }}{\% \text { Known }} \quad X \text { Value Given }}{}$
Ans $=$ Cost Price $=\frac{100 \%}{125 \%} \times 50,000=$ Rs $40,000 /-$
Ans $\quad=\quad$ Rs $40,000 /-$

Vedic Maths Applied to Accountancy

- Example 5: My father saves Rs 50,000 per month.

He spends	20%	on	Rent
25%	on	Household	
20%	on	Education	
	10%	on	Sundries

- What is his total expense, What is his total income what is his expense on Rent, Household, Education and Sundries.
- Solution:
- To find his Total Expense
- His total expenses $=20 \%+25 \%+20 \%+10 \%=75 \%$
- Hence his Savings $=100-75=25 \% \quad=$ Rs $50,000 /-$
- Ans $=$ His total Expense $=\underline{75 \%} \times 50,000=$ Rs $150,000 /-$

Vedic Maths Applied to Accountancy

- Solution:
- His total Income $=\underline{100 \%} \times 50,000 \quad=\quad$ Rs 200,000/25\%
- His Expense on Rent =
$\underline{20 \%} \times 50,000=$ 25\%
- His expense on House Hold = 25\% 50,000/-
- His expenses on Education $=20 \%=$ Rs 40,000/-
- His expenses on Sundries $=10 \%=$ Rs 20,000/-

Vedic Maths Applied to Accountancy

- Solution:
- To find his Total Expense
- His total expenses $=20 \%+25 \%+20 \%+10 \%=75 \%$
- Hence his Savings $=100-75=25 \% \quad=$ Rs $50,000 /-$
- Ans $=$ His total Expense $=\underline{75 \%} \times 50,000=$ Rs 150,000/-
- His total Income $=\underline{100 \%} \times 50,000=$ Rs 200,000/-
- His Expense on Rent Rs 40,000/-
- 25\%
- His expense on House Hold $=25 \% \quad=$ Rs 50,000/-
- His expenses on Education = 20% Rs 40,000/-

Let Noble Thoughts come from all

- His expenses on Sundries directions. Rig19有 = Rs

Vedic Maths Applied to Accountancy

- SHORT CUT TECHNIQUES
- Technique 2:
- The Factors are

To find Profit when CP or SP is given
$\mathrm{Nr} /(\mathrm{Dr}+\mathrm{Nr}) \quad$ when Sale Price is Known
$\mathrm{Nr} /(\mathrm{Dr}-\mathrm{Nr}) \quad$ when cost price is Known
$\mathrm{Nr}=$ Numerator $\mathrm{Dr}=$ Denominator

- Example 6: Sale of Goods is Rs $400 /$ - at a Profit of 25% on Cost. What is the Profit.
- Answer: Profit is $25 \% \quad=\quad 1 / 4 \quad$ (Here $\mathrm{Nr}=1 \& \mathrm{Dr}=4$)
- Hence the factor is $\mathrm{Nr} /(\mathrm{Dr}+\mathrm{Nr})=1 /(1+4)=1 / 5$
- Multiply Sale by Factor

$$
=\quad 400 \times 1 / 5=\text { Rs } 80 /- \text { is Profit. }
$$

Vedic Maths Applied to Accountancy

- Example 7: Cost Price is Rs 30,000/-

Profit is 40% on Sale What is the Profit

- Here the factor is $\mathrm{Nr} /(\mathrm{Dr}-\mathrm{Nr})$

$$
\mathrm{Nr} /(\mathrm{Dr}-\mathrm{Nr})=4 /(10-4)=4 / 6=2 / 3
$$

- Hence Profit is cost X Factor $=30,000 \times 2 / 3=$ Rs $20,000 /-$
- Cross Check: $\quad C P+$ Profit $=30,000+20,000=50,000 /-$
- 40% on Sale is $50,000 \times 4=20,000$ correct Ans

Vedic Maths Applied to Accountancy

- Technique 3:
- Example 8: I have Rs 4,000/- to invest in 2 Banks.

SBI is paying 5% interest and BoB is paying 3% interest pa.
Altogether I get Rs 288/- interest for 2 years.
How much money to be invested in each bank?

- Solution:
- 1% on $4,000=40 ;$ Hence $5 \% / / 3 \%$ will be $200 / / 120$
- The interest for 2 years is $288 . \quad$ Hence interest for 1 year is 144.
- If entire Rs 4,000 is invested in SBI // BoB, the interest for 1 year will be 200 // 120.
- But the interest was 144. The difference is $56 / / 24$
- Reverse is $24 / / 56$ Diving by 8 the Ratio is $3 / / 7$
- Hence the investment should be in the ratio of SBI // BoB :: 3 // 7 which is $\quad 400 \times 3 / / 400 \times 7=\quad$ Rs $1200 / / 2800$
- Hence the investment should be Rs 1200 in SBI and Rs 2800 in BoB.

Vedic Maths Applied to Accountancy

- CROSS CHECK
- Interest by SBI at 5% on Rs 1200 for 1 year = 60

For 2 years $=120$

- Interest by BoB at 3\% on Rs 2800
$=84$
For 2 years $=168$
- Hence total Interest for 2 years is
$120+168=$ Rs 288
Verified

Vedic Maths Applied to Accountancy

- \mathbf{a}

Quote by SisterNivedita

Are the countrymen of Bhaskara \& Sankaracharya inferior to those of Newton and Darwin? Sister Nivedita

